
Proceedings of the UK eScience All hands Meeting 2006

Profiling OGSA-DAI Performance
for Common Use Patterns

Bartosz Dobrzelecki1, Mario Antonioletti1, Jennifer M. Schopf2,3, Alastair C. Hume1, Malcolm
Atkinson2, Neil P. Chue Hong1, Mike Jackson1, Kostas Karasavvas2, Amy Krause1, Mark

Parsons1, Tom Sugden1, and Elias Theocharopoulos2

1. EPCC, University of Edinburgh, JCMB, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK.
2. National e-Science Centre, University of Edinburgh, Edinburgh EH8 9AA, UK.
3. Distributed Systems Laboratory, Argonne National Laboratory, Argonne, IL, 60439 USA.

Abstract

OGSA-DAI provides an extensible Web service-based framework that allows data
resources to be incorporated into Grid fabrics. The current OGSA-DAI release (OGSA-
DAI WSI/WSRF v2.2) has implemented a set of optimizations identified through the
examination of common OGSA-DAI use patterns. In this paper we describe these
patterns and detail the optimizations that have been made for the current release based on
the profiles obtained. These optimizations include improvements to the performance of
various data format conversion routines, the introduction of more compact data delivery
formats, and the adoption of SOAP with attachments for data delivery. We quantify the
performance improvements in comparison to the previous OGSA-DAI release.

1. Introduction
The Open Grid Services Architecture –

Data Access and Integration (OGSA-DAI)
project [OD] aims to provide the e-Science
community with a middleware solution to
assist with the access and integration of
data for applications working within Grids.
Early Grid applications focused principally
on the storage, replication, and movement
of file-based data, but many of today’s
applications need full integration of
database technologies with Grid
middleware. Not only do many Grid
applications already use databases for
managing metadata, but increasingly many
are associated with large databases of
domain-specific information, for example,
biological or astronomical data.

OGSA-DAI offers a collection of
services for adding database access and
integration capabilities to the core
capabilities of service-oriented Grids, thus
allowing structured data resources to be
integrated with Grid applications. A
systematic performance analysis of OGSA-
DAI v2.1 [AAB+05] led to the emphasis on
performance for the v2.2 release.

Our current work has focused on
identifying common use patterns and their

associated bottlenecks and then improving
the performance of these particular use
cases. The optimizations implemented
include speeding data format conversion
routines, introducing more compact data
delivery formats, and using SOAP with
attachments for data delivery. Section 2
references more detailed descriptions of
OGSA-DAI and outlines related
middleware and performance studies.
Section 3 describes the use patterns adopted
to identify the performance bottlenecks and
describes the performance enhancements
made. Section 4 quantifies the
improvements resulting from these changes,
comparing the performance of the present
WSRF OGSA-DAI release v2.2, with the
previous v2.1 release. Section 5 presents
some conclusions derived from this work.

2. Related Work
Various publications provide

information about the design of OGSA-DAI
[AAB+05a], ways in which it can be used
[KAA+05], the related WS-DAI family of
specifications [AKP+06], and details about
the OGSA-DQP software [AMP+03] which
adds distributed query-processing
capabilities through OGSA-DAI. Up-to-
date documentation, tutorials, and

downloads related to OGSA-DAI are
available from [OD].

2.1. Related Applications

Three current projects have closely
related functionality to that of OGSA-DAI:
the Storage Resource Broker, WebSphere
Information Integrator, and Mobius.

The Storage Resource Broker (SRB)
[SRB], developed by the San Diego
Supercomputer Center, provides access to
collections, or sets of data objects, using
attributes or logical names rather than their
physical names or locations. SRB is
primarily file oriented but can also work
with data objects, including archival
systems, binary large objects in a database
management system, database objects that
may be queried by using SQL, and tape
library systems. By contrast, OGSA-DAI
takes a database oriented approach which
also includes access to files. These two
approaches are generally suited to differing
problems, but SRB and OGSA-DAI can
complement each other.

WebSphere Information Integrator
(WSII), a commercial product from IBM, is
commonly used to search data spanning
organisational domains, data federation and
replication, data transformation, and data
event publishing [WSII]. Data federation
allows multiple data sources to be queried
and accessed through a single access point.
IBM recently developed a Grid wrapper for
WSII using OGSA-DAI, taking advantage
of its abstraction capabilities, to wrap
additional data resources that WSII can then
access [LMD+05]. A more detailed
comparison between OGSA-DAI and WSII
can be found in [SH05].

Mobius [Mob], developed at Ohio State
University, provides a set of tools and
services to facilitate the management and
sharing of data and metadata in a Grid. In
order to expose a resource in Mobius, the
resource must be described by using an
XML Schema, which is then shared via
their Global Model Exchange. The resource
can then be accessed by querying the
Schema using, for example, XPath. OGSA-
DAI, in contrast, does not require an XML
Schema to be created for a resource; rather,

it directly exposes that information (data
and metadata/schema) and is queried by
using the resource's intrinsic querying
mechanisms.

Several other projects, including
ELDAS [ELD] and Spitfire [SF], also
address the use of databases in a Grid
environment but are not as commonly used.

2.2. Related Performance Studies

The Extreme Grid Web Services group
at Indiana University have examined the
performance of SOAP for high-
performance and Grid computing [CGB02,
GSC+00]. They have developed an XML
Pull Parser implementation that is
significantly faster than Xerces [Slo04].
This work concentrates on the XML
processing and is not specific to database
use patterns but one that potentially could
be exploited by OGSA-DAI through its use
of Web services.

A large body of work exists on
benchmarking relational database systems.
In particular, the Wisconsin Benchmark
[Gra93] consists of queries that test the
performance of small numbers of join
operations. The XML Benchmark Project
[SWK+01] has presented an approach to
benchmarking XML databases [SWK+01a].
However, none of this work has looked at
benchmarking Web service interfaces to
databases – the area that OGSA-DAI
occupies.

Some attempts have been made to use
standard benchmarks to investigate the
overheads of providing database access
through Web service-style interfaces, for
example by using TPC-H [HIM02]. This
particular work focuses on network and
encryption overhead but using a non
SOAP-based interface. Nevertheless, this
work is of interest for comparison for
SOAP-based access.

Previous work has also been done to try
to understand the performance of earlier
versions of OGSA-DAI [JAC+03,
AAB+05, AGM+05]. This work mainly
looked at particular technical issues,
whereas the work presented in this paper
seeks to use common use patterns as a
starting point for on-going optimisation.

 2

3. Performance Bottlenecks in
Common Use Patterns

OGSA-DAI employs Web services to
expose intrinsic data resource capabilities
and the data contained to its clients. In most
instances, the data resources used are
relational databases that require read-only
access (query) and no write access
(update/insert). For this reason, our study
has focused on relational databases and
used the execution of an SQL query as the
base test case.

3.1. Use Case 1: Executing an SQL
Query on a Remote Server

A typical OGSA-DAI client-service
interaction involves a client running an
SQL query through a remote OGSA-DAI
service that then returns the query response,
typically some data, in an XML document.
This interaction involves the following six
steps:

(1) The client sends a request containing

the SQL query in a SOAP message to
an OGSA-DAI service.

(2) The server extracts the request from the
SOAP message, and the SQL query is
executed on the relational database.

(3) The query results are returned from the
relational database to the OGSA-DAI
server as a set of Java ResultSet
objects.

(4) The server converts the Java ResultSet
objects into a format suitable for
transmission back to the client, such as
WebRowSet.

(5) This data is sent back to the client in a
SOAP message.

(6) The client receives the SOAP message,
unpacks the data, and converts it back
to a ResultSet object (assuming this is a
Java client).

3.1.1. Improvement 1: Faster
Conversion

Profiling this use case showed that the
conversion process, where a ResultSet
object is converted to the WebRowSet
format on the server (step 4), as well as the

inverse process on the client (step 6), was
the primary performance bottleneck, and an
obvious area for improvement.

Previously, these converter routines
were also applied to produce binary data,
going from ResultSets to some suitable
binary format. However, the cost of
iteratively having to convert ResultSets to
binary data proved to be too high. So, the
converters were restricted to only deal with
text based formats. This benefited the
performance. In addition, a routine that
used a regular expression Java API to
escape XML special characters in data
fields proved to be too expensive and was
thus replaced by a more efficient parser that
worked on arrays. These combined
modifications improved the performance of
the converters.

3.1.2. Improvement 2: Change in
Data Format

In analyzing the overhead for our first
use case, we also noticed that using
WebRowSet as an intermediate delivery
format added a significant amount of XML
mark-up that increased the amount of data
that needed to be transferred between the
client and server, often up to twice the
original size. In addition, the parsing of the
messages out of XML could be slow.

This scenario also identified the fact that
WebRowSet was only being used as an
intermediate delivery format and was thus
possibly incurring an unnecessary
overhead. Hence, a second improvement we
investigated was the use of an alternative
intermediate delivery format, namely,
Comma Separated Values (CSV). This
format uses space more efficiently and is
easier to parse, but it has two significant
drawbacks. First, it provides only limited
support for metadata – namely, an optional
line with column names – so the embedding
of metadata has weaker support than is the
case with the WebRowSet format. Second,
as there is no standard for representing
relational data in CSV format, third-party
tools may have difficulty interpreting
OGSA-DAI-generated CSV files, despite

 3

the fact that common conventions are used
and they are internally consistent.

The reduction in data size in going from
a WebRowSet to a CSV format can be
estimated by calculating the space required
to represent the same result in each format.
This can be done by calculating the number
of extra characters needed to describe a row
of data. Assuming for CVS data that all
fields are wrapped in double quotes and that
there are no escaped characters, then the
extra number of characters needed to
represent a row in CSV document is:
(number_of_columns * 3) – two quotes and
a comma – whereas for WebRowSet the use
of specific WebRowSet defined XML tags
make this number: (number_of_columns *
27)+25. So, WebRowSet always requires at
least nine time as many non-data characters
as CSV.

3.2. Use Case 2: Transferring Binary
Data

A slight variation on the previous use
case involves using OGSA-DAI to provide
access to files stored on a server’s file
system. Commonly, these could be large
binary data files (e.g., medical images),
stored in a file system, with the associated
metadata for these files stored separately in
a relational database. The client queries the
databases to locate any files of interest,
which are then retrieved by using the
OGSA-DAI delivery mechanisms. Files are
retrieved separately from the SOAP
interactions for data transport efficiency. In
some cases, however, it can be more
convenient for a client to receive the data
back in a SOAP response message rather
than using an alternative delivery
mechanism.

The implementation of this scenario
includes the same six steps as in the first
use case except that step 4 now requires the
conversion of a binary file to a text-based
format, usually Base64 encoding, in order
for it to be sent back in a SOAP message,
and step 6 includes decoding of the file
back into its original binary format.

3.2.1. Improvement 3: SOAP with
Attachments

The major bottleneck arising from this
scenario is the Base64 encoding of the
binary data for inclusion in a SOAP
message. This encoding requires additional
computation at both the client and the
server side. Moreover, the converted data is
approximately 135% of the size of the
original file, clearly impacting the
efficiency of the data transfer.

We have addressed both of these
concerns by using SOAP messages with
attachments [BTN00]. This approach
significantly reduces the time required to
process SOAP messages and allows the
transfer of binary data to take place without
necessitating Base64 encoding. The one
difficulty with this approach is that, as
SOAP messages with attachments are not a
standard feature of all SOAP specifications,
interoperability issues can arise.

4. Experimental Results
To quantify the effect of the performance
improvements outlined in the preceding
section, we compared the performance of
OGSA-DAI WSRF v2.2 with OGSA-DAI
WSRF v2.1.

4.1. Experimental Setup

We ran our experiments using an
Apache Tomcat 5.0.28 / Globus Toolkit
WS-Core 4.0.1 stack. Our experimental
setup consisted of a client machine and a
server machine on the same LAN. We ran
the server code on a Sun Fire V240 Server,
which has a dual 1.5 GHz UltraSPARC IIIi
processor and 8 GB of memory, running
Solaris 10 with J2SE 1.4.2_05. The client
machine was a dual 2.40GHz Intel Xeon
system running Red Hat 9 Linux with the
2.4.21 kernel and J2SE 1.4.2_08. Both the
client JVM and the JVM running the
Tomcat container were started in server
mode by using the -server
-Xms256m -Xmx256m set of flags.

The network packets in these
experiments traversed two routers, and iperf
1.7.0 found the network bandwidth to be
approximately 94 Mbits/s. The average
round-trip latency was less than 1 ms.

 4

The database used in the experiments
was MySQL 5.0.15 with MySQL
Connector/J driver version 3.1.10. We used
littleblackbook, the sample database table
distributed with OGSA-DAI, for all
experiments. The average row length for
this table is 66 bytes. The rows have the
following schema: int(11), varchar(64),
varchar(128), varchar(20).

Before we took any measurements, both
the client and server JVMs were warmed
up. Then each test was executed 10 times.
The results reported are the average of these
runs, with error bars indicating +/- standard
deviation.

4.2. Faster Conversions and Change
in Data Format

Our first set of experiments was based
on the two improvements suggested by our
first use case, namely, optimizing the code
to do the data format conversions faster and
evaluating the use of CSV instead of
WebRowSet for an intermediate format.

For a set of queries, returning results
consisting from 32 to 16,384 rows, we
measured the time to perform the 6 steps
involved in a client-service interaction,
including the translation of the results into
(and out of) WebRowSet or CSV formats as
appropriate.

Figure 1 shows the overall timing
results. Queries for 512 rows or greater
show a significant improvement, up to 35%
by simply optimizing the WebRowSet
conversion (Improvement 1). The use of
CSV instead of WebRowSet (Improvement
2) also shows a significant improvement for
larger queries, up to 65% over the original
v2.1 and about 50% over simply optimizing
the conversion.

Figure 2 shows in more detail the
performance improvements on the server
side using Apache Axis logging to obtain
the times spent in the different phases of the
SOAP request processing. We divide the
server performance into three phases:

1. Axis Parsing: the time spent in Apache
Axis parsing a SOAP request.

2. OGSA-DAI Server: the time OGSA-
DAI spent performing the requested
activities and building the response
document.

3. Message Transfer: the time the server
spent sending a message back to the client.

Figure 1: Measurements comparing the effects of better conversion code (Improvement 1) and using

CSV formatting instead of WebRowSet format (Improvement 2) against the original v2.1 code. Results
include both client and server times.

 5

Figure 2: Time spent in the server only, split into three phases: Apache Axis parsing, OGSA-DAI server
work, and the message transfer to the client.

The time spent in the Axis parsing phase is
roughly constant as we always perform the
same operation. In all cases the time spent
in the OGSA-DAI server phase dominates
and generally increases systematically with
the size of the query results obtained. The
largest portion of this phase is spent
translating the ResultSet objects from a
Java ResultSet object into WebRowSet or
CSV. The optimised conversion to
WebRowSet (Improvement 1) works up to
50% faster than the original version for
large result sets. By using CSV instead of
WebRowSet (Improvement 2), we also see
a large reduction in delivery time and
reduced network traffic, the Message
Transfer phase.

4.3. Using SOAP Attachments

The second set of experiments we ran
was to test the use of SOAP with
attachments, as outlined in our second use
case and Improvement 3 in Section 3.2. We
compare using Byte64 encoding and
returning the data in the body of a SOAP
message to using SOAP messages with
attachments to transfer a binary file.

Figure 3 shows the time taken to transfer
binary data of increasing size using both
delivery methods. We only have data for

the Original v2.1 code up to 8MB file sizes
because the process of Base64 encoding
and building SOAP response for file sizes
of 16MB upwards consumed all the heap
memory available to the JVM and
consequently caused the JVM to terminate.
The performance gain shows nonlinear
growth with increasing file size.
Transferring an 8 MB file as a SOAP
attachment takes only 25% of the time
needed to transfer the same file inside the
body of a SOAP message. This
improvement is due to the fact that SOAP
attachments do not need any special
encoding, and less time is spent processing
XML because the data is outside the body
of the SOAP message.

Figure 4 gives additional detail about the
server-side performance using the three
previously defined phases. The Axis
parsing phase is roughly constant, as before.
During the OGSA-DAI server phase, the
original SOAP delivery method is CPU
bound because of the Base64 conversion
required, while the performance of the new
SOAP with attachments case is generally
much better, limited mainly by the
performance of the I/O operations rather
than those of the CPU.

 6

Figure 3: Time taken to transfer a binary file using Base64 encoded data inside the body of a SOAP
message and as a SOAP attachment (Improvement 3).

Figure 4: Time spent on server side split into phases. For each group the bar on the left measures the time
spent sending binary data inside a SOAP message (Original) while the right bar corresponds to the

approach where binary data is sent as a SOAP attachment (Improvement 3).

A similar performance gain is seen in

the message transfer phase, where the
absence of Base64 encoding reduces the
quantity of data that needs to be transferred
by up to 35% for the SOAP with
attachments case.

4.4. SQL Results Delivery Using
SOAP Attachments

The final experiment combined the
previous two, by repeating the SQL query
results retrieval from the first experiment
but also using SOAP with attachments for
data delivery. Figure 5 shows that there is
little difference in the performance for

 7

Figure 5: Execution time for scenarios fetching SQL results converted to XML and CSV data using two
delivery mechanisms: delivery inside the body of a SOAP message and delivery as a SOAP attachment.

small data sets (less than 512 rows). For
larger data sets, however, SOAP with
attachments can achieve transfer times that
are up to 30% faster than when using
WebRowSet for delivery. Only the largest
data set sees a performance gain when CSV
formatting is used with SOAP attachments.

5. Conclusions
This paper summarises part of an ongoing
effort to improve the performance of
OGSA-DAI. We have analysed two typical
use patterns, which were then profiled and
the results used as a basis for implementing
a focused set of performance
improvements. The benefit of these has
been demonstrated by comparing the
performance of the current release of
OGSA-DAI, which includes the
performance improvements, with the
previous release, which does not. We have
seen performance improvements of over
50% in some instances. Source code and the
results data are available from [Dob06].

Acknowledgements
This work is supported by the UK e-
Science Grid Core Programme, through the
Open Middleware Infrastructure Institute,
and by the Mathematical, Information, and
Computational Sciences Division
subprogram of the Office of Advanced

Scientific Computing Research, Office of
Science, U.S. Department of Energy, under
Contract W-31-109-ENG-38.

We also gratefully acknowledge the
input of our past and present partners and
contributors to the OGSA-DAI project
including: EPCC, IBM UK, IBM Corp.,
NeSC, University of Manchester,
University of Newcastle and Oracle UK.

References
[AAB+05] M Antonioletti, M. Atkinson, R.

Baxter, A Borley, N. P. Chue
Hong, P. Dantressangle, A. C.
Hume, M. Jackson, A. Krause, S.
Laws, M. Parsons, N. W. Paton, J.
M. Schopf, T. Sugden, P. Watson,
and D. Vyvyan, OGSA-DAI Status
and Benchmarks, Proceedings of
the UK e-Science All Hands
Meeting, 2005.

[AAB+05a] M. Antonioletti, M.P.
Atkinson, R. Baxter, A. Borley,
N.P. Chue Hong, B. Collins, N.
Hardman, A. Hume, A. Knox, M.
Jackson, A. Krause, S. Laws, J.
Magowan, N.W. Paton, D. Pearson,
T. Sugden, P. Watson, and M.
Westhead. The Design and
Implementation of Grid Database
Services in OGSA-DAI.
Concurrency and Computation:

 8

Practice and Experience, Volume
17, Issue 2-4, Pages 357-376,
February 2005.

[AGM+05] M.N. Alpdemir, A. Gounaris,
A. Mukherjee, D. Fitzgerald, N. W.
Paton, P. Watson, R. Sakellariou,
A. A.A. Fernandes, and J. Smith,
Experience on Performance
Evaluation with OGSA-DQP,
Proceedings of the UK e-Science
All Hands Meeting, 2005.

 [AKP+06] M. Antonioletti, A. Krause, N.
W. Paton, A. Eisenberg, S. Laws,
S. Malaika, J. Melton, and D.
Pearson. The WS-DAI Family of
Specifications for Web Service
Data Access and Integration. ACM
SIGMOD Record, Vol 35, No 1,
pp48-55, 2006.

[AMP+03] M. N. Alpdemir, A. Mukherjee,
N. W. Paton, P. Watson, A. A. A.
Fernandes, A. Gounaris, and J.
Smith. Service-Based Distributed
Querying on the Grid. Service-
Oriented Computing - ICSOC 2003
Editors: M. E. Orlowska, S.
Weerawarana, M. P. Papazoglou, J.
Yang. Lecture Notes in Computer
Science, Volume 2910, pp. 467-482
Springer Berlin/Heidelberg 2003.

[BTN00] J. J Barton, S. Thatte, and H. F.
Nielsen. SOAP Messages with
Attachments. W3C Note 11
December 2000.

[CGB02] K. Chiu, M. Govindaraju, and R.
Bramley, Investigating the Limits
of SOAP Performance for
Scientific Computing, Proceedings
of HPDC 2002.

[Dob06] B. Dobrzelecki, Code and raw data
from experiments,
www.ogsadai.org.uk/documentatio
n/scenarios/performance, 2006.

[ELD] ELDAS (Enterprise Level Data
Access Services), EDIKT,
www.edikt.org/eldas.

[Gra93] J. Gray, Database and Transaction
Processing Performance Handbook.
www.benchmarkresources.com/
handbook, 1993.

[GSC+00] M. Govindaraju, A. Slominski,
V. Choppella, R. Bramley, and D.
Gannon, On the Performance of

Remote Method Invocation for
Large-Scale Scientific
Applications, Proceedings of
SC'00, 2000.

[HIM02] H. Hacigumus, B. Iyer, and S.
Mehrotra, Providing database as a
service, Proceedings of 18th
International Conference on Data
Engineering 2002.

[JAC+03] M. Jackson, M. Antonioletti, N.
Chue Hong, A. Hume, A. Krause,
T. Sugden, and M. Westhead,
Performance Analysis of the
OGSA-DAI Software, Proceedings
of the UK e-Science All Hands
Meeting, 2003.

[KAA+05] K. Karasavvas, M. Antonioletti,
M.P. Atkinson, N.P. Chue Hong, T.
Sugden, A.C. Hume, M. Jackson,
A. Krause, and C. Palansuriya.
Introduction to OGSA-DAI
Services. Lecture Notes in
Computer Science, Volume 3458,
Pages 1-12, May 2005.

[LMD+05] A. Lee, J. Magowan, P.
Dantressangle, and F. Bannwart.
Bridging the Integration Gap, Part
1: Federating Grid Data. IBM
Developer Works, August 2005.

[Mob] Mobius, projectmobius.osu.edu.
[OD] Open Grid Services Architecture –

Data Access and Integration
(OGSA-DAI),
www.ogsadai.org.uk.

[SH05] R. O. Sinnott and D. Houghton,
Comparison of Data Access and
Integration Technologies in the Life
Science Domain, Proceedings of
the UK e-Science All Hands
Meeting 2005, September 2005.

[SF] Spitfire, edg-wp2.web.cern.ch/edg-
wp2/spitfire.

[Slo04] A. Slominski.
www.extreme.indiana.edu/~aslom/
xpp_sax2bench/results.html, 2004.

[SRB] Storage Resource Broker (SRB),
www.sdsc.edu/srb.

[SWK+01] A. R. Schmidt, Florian Waas,
M. L. Kersten, D. Florescu, I.
Manolescu, M. J. Carey, and R.
Busse, The XML Benchmark
Project, CWI (Centre for
Mathematics and Computer

 9

http://www.ogsadai.org.uk/documentation/scenarios/performance
http://www.ogsadai.org.uk/documentation/scenarios/performance
http://www.edikt.org/eldas
http://www.benchmarkresources.com/
http://projectmobius.osu.edu/
http://www.ogsadai.org.uk/
http://edg-wp2.web.cern.ch/edg-wp2/spitfire
http://edg-wp2.web.cern.ch/edg-wp2/spitfire
http://www.extreme.indiana.edu/%7Easlom/xpp_sax2bench/results.html
http://www.extreme.indiana.edu/%7Easlom/xpp_sax2bench/results.html
http://www.sdsc.edu/srb

Science), Amsterdam, The
Netherlands, 2001.

[SWK+01a] A. Schmidt, F. Waas, M.
Kersten, D. Florescu, M. J. Carey,
I. Manolescu, and R. Busse, Why
and How to Benchmark XML
Databases, ACM SIGMOD Record
Volume 30, Issue 3, Pages 27-32,
September 2001.

[WSII] Web Sphere Information Integrator
(WSII), www.ibm.com/software/
data/integration.

[WRS] WebRowSet XML Schema
definition, java.sun.com/xml/ns/
jdbc/webrowset.xsd.

 10

http://www.ibm.com/software/%20data/integration
http://www.ibm.com/software/%20data/integration
http://java.sun.com/xml/ns/jdbc/webrowset.xsd
http://java.sun.com/xml/ns/jdbc/webrowset.xsd

	
	1. Introduction
	2. Related Work
	2.1. Related Applications
	2.2. Related Performance Studies

	3. Performance Bottlenecks in Common Use Patterns
	3.1. Use Case 1: Executing an SQL Query on a Remote Server
	3.1.1. Improvement 1: Faster Conversion
	3.1.2. Improvement 2: Change in Data Format

	3.2. Use Case 2: Transferring Binary Data
	3.2.1. Improvement 3: SOAP with Attachments

	4. Experimental Results
	4.1. Experimental Setup
	4.2. Faster Conversions and Change in Data Format
	4.3. Using SOAP Attachments
	4.4. SQL Results Delivery Using SOAP Attachments

	5. Conclusions
	Acknowledgements
	References

